• ようこそゲストさん!

bbbcさんの日記

(SNS全体・外部に公開(Web全体に公開))

2013年
03月31日
16:20 bbbcさん

TED-Ed 003・・Evolution in a big city

  • 英語の話題
TED-Ed 003・・Evolution in a big city(大都市でおこる進化)     代表頁へ戻る

05分・・215wpm


(City traffic)
So I'm here today to encourage you to think about New York City, not just as one of humanity's greatest achievements, but as home to native wildlife that are subject to a grand evolutionary experiment. So take this forested hillside in northern Manhattan, for example. This is one of the last areas left in the city where there is clean spring water that's still seeping out of the ground. You could drink this out of your hands and you'd be OK. These tiny little areas of seeping water contain huge populations of Northern Dusky Salamanders These guys were common in the city maybe sixty years ago, but now they're just stuck on this single hillside and a few places in Staten Island.

Not only do they suffer the indignity of being stuck on this hillside, but we divided the hillside in two on two different occasions with bridges crossing from the Bronx into Manhattan. But they're still there on either side of the bridges where you see the red arrows about 180th street, 167th street. And my lab has found that if you just take a few segments of DNA from salamanders in those two locations you can tell which side of the bridge they came from. We build this single piece of infrastructure that's changed their evolutionary history. We can go study these guys, you know, we just go to the hillside we know where they are, we can flip over rocks, we can catch them. There are a lot of other things in New York City though that are not that easy to capture, such as this guy, a coyote. We caught him on an automatic camera trap somewhere, in an undisclosed location, not allowed to talk about it yet. But they're moving into New York City for the first time. They're very flexible, intelligent animals. This is one of this year's cubs checking out one of our cameras. And my colleagues and I are very interested in understanding how they're going to spread through the area, how they're going to survive here, and maybe even thrive. And they're probably coming to a neighborhood near you if they are not already there.

So, there are some things that are too fast to be caught by hand. We can't pick them up on the cameras, so we actually set up traps all around the New York City and the parks. This is one of our most common activities. Here's some of my students and collaborators getting the traps out and ready. And this guy, we catch in almost every forested area in New York City. This is the White-footed Mouse. This is not the mouse you find running around your apartment. This is a native species, been here long before humans, and you find them in forests and meadows. Because they're so common in forested areas in the city, we're using them as a model to understand how species are adapting to urban environments.

So if you think back 400 years ago, the five boroughs would have been covered in forests and other types of vegetation. This mouse would have been everywhere. Huge populations that showed few genetic differences across the landscape. But if you look at the situation today, they're just stuck in these little islands of forest scattered around the city. Just using 18 short segments of DNA, we can pretty much take a mouse somebody could give us a mouse, not tell us where it was from, and we could determine what park it came from. That's how different they've become. You'll notice in the middle of this colored figured here there's some mixed up colors. There are a few parks in the city that are still connected to each other with strips of forest so the mice can run back and forth and spread their genes so they don't become different, but throughout the city, they're mostly becoming different in the parks.

All right, so I'm telling you they're different, but what does that really mean? What's changing about their biology? To answer this question we're sequencing thousands of genes from our city mice and comparing those to thousands of genes from the country mice. So their ancestors outside of New York City in these big, more wilderness areas. Now genes are short segments of DNA that code for amino acids. And amino acids are the building blocks of proteins. Now if a single base pair changes in a gene, you can get a different amino acid, which will then change the shape and structure of the protein. If you change the structure of a protein, you often change something about what it does in the organism. Now if that change leads to a longer life or more babies for a mouse, something evolutionary biologists call fitness, then that single base pair change will spread quickly in an urban population.

So this crazy figure is actually called a Manhattan plot, because it kind of looks like a skyline. And each dot represents one gene, and the higher the dot is in the plot, the more different it is between city and country mice. The ones kind of at the tips of the skyscrapers are the most different, especially those above the red line. And these genes encode for things like immune response to disease, because there might be more disease in very dense, urban populations. Metabolism, how the mice use energy, and heavy metal tolerance. You guys can probably predict that New York City soils are pretty contaminated with lead, and chromium and that sort of thing. And now our hard work is really starting, we're going back into the wilds of New York City parks, following the lives of individual mice and seeing exactly what these genes are doing for them. And I would encourage you guys to try to look at your parks in a new way, I'm not going to be the next Charles Darwin, but one of you guys might be, so just keep your eyes open. Thank you. (Applause) (Music)
  • 総アクセス数(3,590)
  • 拍手拍手(0)
  • お気に入りお気に入り(0)